Progression in Calculations

Addition

Key vocabulary - sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to', 'is the same as'

(Year group) Objective and Strategies	Concrete	Pictorial	Abstract
One more	Using a range of resources including (unifix blocks, counters, bead strings)	\square \square \square Finding 1 more	Using number lines or counting on in head to find 1 more
Combining two groups	Using a range of resources	Using pictures to show two groups and counting them together	 Using pictures. EXC: beginning to use number sentences to represent addition.

Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar. Use a variety of resources	Use pictures to add two numbers together as a group or in a bar.	
Starting at the bigger number and counting on	Counting on using number lines by using cubes, numicon or bead strings.	A bar model which encourages the children to count on. ?	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4 ? What's the total of 4 and 2? $4+2$ This can progress all the way to counting on using 2 digit numbers and greater. (year2)
Regrouping to make 10 by using ten frames and counters/cubes or using numicon.	$6+5=11$ Start with the bigger number and use the smaller number to make 10 .	Use pictures or a number line. Regroup or partition the smaller number to make 10 .	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

		$\begin{aligned} & 3+9= \\ & 9+5=14 \end{aligned}$ Children to draw the ten frame and counters/cubes	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \text { and } \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10 , make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{40} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
2-digit + 1/2 digit, column method- no regrouping and counting	TO + O using base 10. Continue to develop understanding of partitioning and place value $41+8$	Children to represent the concrete using a particular symbol, e.g. lines for 10s and dots/crosses for ones.	$41+8$ $\begin{gathered} 1+8=9 \\ 40+9=49 \end{gathered}$

On. (See counting on for concrete and pictorial)	Progress onto TO + TO using base 10 $24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	See also bar model image.	$\begin{array}{r} 41 \\ +\quad 8 \\ \hline 49 \end{array}$ Calculations $21+42=$ 21 $+\underline{42}$ $16+7=23$ $27+30=57 \quad+10 \quad+10$ $63+16=79{ }_{10}$
Column methodregrouping	TO + TO using base 10. Continue to develop understanding of partitioning and place value and use this to support addition. Begin with no exchanging. $36+25$	This could be done one of two ways.	Looking for ways to make 10 $\begin{array}{ll} 36+25= & \begin{array}{l} 30+20=50 \\ 5+5=10 \\ \\ 50+10+1=61 \end{array} \\ 1 & 5 \end{array}$

Subtraction

Key Vocabulary - take away, less than, the difference, subtract, minus, fewer, decrease, ' 7 take away 3 , the difference is four'

(Year group) Objective and Strategies	Concrete	Pictorial	Abstract
1 less	Using a range of resources including (unifix blocks, counters, bead strings)	\square \qquad \square Finding 1 less	Using number lines or counting on in head to find 1 less
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. Rather than crossing out, the children will physically remove the objects.	Cross out drawn objects to show what has been taken away. Use of the bar model	$8-2=$ \square $=8-2$

Counting back	Count back using number lines or number tracks Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4$	Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Count back on a number line or number track This can progress all the way to counting back using two 2 digit numbers. (Year 2)
Find the difference	Compare amounts and objects to find the difference. Use cubes, numicon, and other objects. Use cubes to build towers or make bars to find the difference	Use basic bar models with items to find the difference Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Count on to find the difference. Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches. Find the difference between 8 and 6.

		between 2 numbers. Children to draw the cubes/other concrete objects which they have used $\begin{aligned} & \operatorname{XXXXXXXX} \\ & \text { XXXXXX } \end{aligned}$	$8-6$, the difference is ? Children to also explore why 9-7 $=8-6$ (the difference, of each digit, has changed by 1 do the difference is the same- this will help when solving 10000-9987)
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.
Make 10	Using numicon or 10 frames $14-5=$ O- acoce - बagag	Children to present the 10 frame pictorially.	14-5 = 9 You also want children to see related facts e.g. 15-9=5 Children to represent how they have solved it e.g.

Column method without regrouping	Use base 10 (2-digit -1-digit, 2-digit - 2 -digit and beyond)			$\begin{gathered} 47-24=23 \\ -\frac{20+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction
Column method with regrouping	Using Base 10 and having to exchange. 1) Start by partitioning 45 2) Exchange one ten for ten more ones 3) Subtract the ones, then the tens. Using place value counters 234-88	Once the children have had concrete, they should be subtraction. Like the other pictorial repr represent the counters.	rially practice with the ble to apply it to any sentations, children to	Children can start their formal written method by partitioning the number into clear place value columns. $\begin{array}{ccc} 7 & 28 & -582=146 \\ H & \top & u \\ { }^{H} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ It's crucial that the children

Multiplication

Key vocabulary- double, times, multiplied by, the product of, groups of, lots of, 'is equal to', 'is the same as'

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Repeated grouping/ addition		Children to represent the practical resources in a picture, e.g. Use of a bar model for a more structures method.	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$
Use number lines to show repeated groups		Represent this pictorially alongside a number line, e.g.	Abstract number line
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Children to draw the arrays.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

\begin{tabular}{|c|c|c|c|}
\hline Partition to multiply \& Use numicon or Base 10. 4×15

\square

\square \& Children to represent the concrete manipulatives in a picture, e..g Base 10 can be represented like: \& | Children to be encouraged to show the steps they have taken $\begin{array}{r} 4 \times 15 \\ \downarrow \\ 105 \end{array}$ $\begin{aligned} 10 \times 4 & =40 \\ 5 \times 4 & =20 \\ 40+20 & =60 \end{aligned}$ |
| :--- |
| A number line can also be used |

\hline Grid Method \& | Show the link with arrays to first introduce the grid method. |
| :--- |
| 4 rows of 10 4 rows of 3 |
| Move on to using Base 10 to move towards a more compact method. |
| 4 rows of 13 |
| Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. | \& | Children can represent the work they have done with place value counters in a way that they understand. |
| :--- |
| They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below. | \& | Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ |
| :--- |
| Moving forward, multiply by a 2 digit number showing the different rows within the grid method. |

\hline
\end{tabular}

23	23	23	23	23	23

?
With the counters, prove that $6 \times 23=138$

Why is $6 \times 23=32 \times 6$?

| Mai had to swim 23 lengths, 6
 times a week. How many lengths
 did she swim in one week?
 Tom saved 23 three days a week.
 How much did he save in 2 weeks? | $6 \times 23=$ |
| :--- | :--- | :--- |
| | $\square=6 \times 23$ | answer?

Division

Key vocabulary - share, group, divide, divided by, half, 'is equal to', 'is the same as'

Objective and Strategies	Concrete	Pictorial	Abstract	
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?	
			3	3

Division with a remainder 2d $\div 1 d$	$14 \div 3=$ Divide objects between groups and see how much is left over Use of lolly sticks to form wholes \square $13 \div 4=$	Children to represent the resources they use in a pictorial way.	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $13 \div 4=3 r 1$
Division using base 10 2d $\div 1 d$ (no remainders) SHARING	$48 \div 4=12$ Start with the tens.	Children to represent the base 10 and sharing pictorially.	$48 \div 4$ $\begin{aligned} & 4 \text { tens } \div 4=1 \text { ten } \\ & 8 \text { ones } \div 4=2 \text { ones } \\ & 10+2=12 \end{aligned}$

Fluency variation, different ways to ask children to ask to solve $615 \div 5$

$2544 \div 12$
How many groups of 12 thousands do we have? None

Exchange 2 thousand for 20 hundreds.

How many groups of 12 are in 25 hundreds? 2 groups. Circle them.
We have grouped 24 hundreds so can take them off and we are left with one.

Pictorial	Abstract
Children to represent the counters, pictorially and record the subtractions beneath.	$1 2 \longdiv { 2 ^ { 2 } 5 4 4 }$

Step one- exchange 2 thousand for 20 hundreds so we now have 25 hundreds.

12 | 02 |
| :---: |
| $\frac{24}{1}$ |

Step two- How many groups of 12 can I make with 25 hundreds? The 24 shows the hundreds we have grouped. The one is how many hundreds we have left.

0212 $1 2 \longdiv { 2 ^ { 2 } 5 4 4 }$ 24 14
\qquad

$$
24
$$

$$
24
$$

Exchange the one hundred for 10 tens. How many groups of 12 can
I make with 14 tens?
The 14 shows how many tens I have, the 12 is how many I grouped and the 2 is how many tens I have left.

Exchange the 2 tens for 20 ones. The 24 is how many ones I have grouped and the 0 is what I have left.

Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2.

Exchange the two tens for twenty ones so now we 24 ones. How many groups of 12 are in 24? 2

